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Abstract. A geometrical description of mechanical systems subjected to impulsive non-
holonomic constraints is given. Their motions are determined by means of suitable projection
operators which allow us to evaluate the instantaneous jumps of momenta due to the action of
impulsive reaction forces. Several paradigmatic examples are investigated from this viewpoint:
a disk falling into a plane, a rolling ball hitting a wall and the collision of two balls.

1. Introduction

Let us start with three paradigmatic examples. Imagine a disk falling freely on a horizontal
plane such that, after collision, it remains rolling on the plane. Assume that a ball rolls
without slipping over a surface and, suddenly, it hits a wall. Or, finally, imagine the collision

of two balls. The problem is how to describe in a geometrical way the dynamics of these
mechanical systems. In classical, and also recent, books [1, 8,9, 11] (see also [15]), these
kinds of problems are widely treated, and some analytical solutions are given. The above
examples are subjected to impulsive forces, that is, forces which act instantaneously, and
have non-holonomic constraints. So, since the motion of a mechanical system described
by a differential equation can be integrated if some initial data are given, such as positions
and velocities, when an impulsive force acts, the new required initial data suffer a jump
after the impulse. The problem then becomes how to know the new initial data after
the impulse. This is accomplished mostly by using the particular physical conditions
of the system: elasticity, Carnot’'s theorem, etc. The three examples above fit into the
category of impulsive constraints, that is, the impulsive forces arise from the discontinuity
of the constraints themselves. Indeed, they have one-sided holonomic constraints. In the
first example, an impulsive non-holonomic constraint appears (the rolling condition) which
remains after collision and in the second and third one, several possibilities appear depending
on the conditions after the impulse.
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The aim of this paper is to provide a geometrical framework for describing systems
subjected to impulsive constraints. Our inspiration is the geometrical description of non-
holonomic mechanical systems as implicit differential equations introduced in [5] (see also
[12,13]). In our case, the constraint submanifold is a submaniolaf the velocity space
T Q with boundary,Q being the configuration manifold. In the interior 6fthe permanent
non-holonomic constraints act while on the boundary impulsive constraints also appear.
We introduce the Chetaev bundle of reaction forces, and if two conditions of admissibility
and compatibility are satisfied, the dynamics of the system is well defined. Moreover, a
projector is defined which allows us to obtain the initial conditions after collision from those
before collision. Projectors were previously used only to describe permanent constraints
[10, 7, 2, 3]. As a by-product we obtain a geometric formulation of Carnot’s theorem. Our
results extend those previously obtained by Lacomba and Tulczyjew [6] for the case of
one-sided holonomic constraints.

In section 11, the theory is extended to a more general situation, in the sense that
the impulsive forces appear in a submanifold whose codimension is not necessarily 1.
The geometrical description is very similar, and, assuming again the admissibility and
compatibility conditions, the dynamics is ellucidated.

2. A mechanical motivation: Impulsive forces

We begin with a discussion of classical mechanical systems with impulsive forces, see
[1,8,9,11].

Consider a system ofz particles in R® such that the particlei has massM,;.
We introduce coordinatesq® 2, g%, ¢4%) for the particle j. Suppose thatF; =
(F3=2, F3~1 F3%) is the force acting on the particlg

The change of velocity of the particlein an interval o, #1] is determined by the system
of integral equations

K

dg
dr

1
=4 = [ Fadni i ®
J Yo

1
where 3 — 2 <« < 3j. The integrals| F“dr, 3j —2 < « < 3j are the components of

I
the impulse of the force F; and equatic())n (1) establishes the relation between the impulse
and the momentum change, i.e. ‘impulse is equal to momentum change’. Equation (1) is
a generalization of the Newton second law, in the sense that it allows us to consider the
case of velocities with finite jump discontinuities (see [11]). This is precisely the case of
impulsive forcesthat is, an impulsive forcé generates a finite non-zero impulse at some
time instants. Then, iF is impulsive there exists an instagtsuch that

lim /let:P;éO. @)

t—td Jro

Equation (2) implies that the impulsive force has an infinite magnitude|fe= +oo,
but we are assuming that its impulgeis well defined and finite. It can be mathematically
thought of as a Dirac delta function concentratedyat

Hereafter, we rename the coordinates and the forcég‘asand(F¥), 1 < « < 3m = n.

The impulsive forces may be caused by constraints. These kinds of constraints are
calledimpulsive constraintsif we are in the presence of non-holonomic constraints of type
W = 0 whereV = b,(q)q", the constraint force is given by

Fe = ub,
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whereu is a Lagrange multiplier (see below). Then, this constraint is impulsiveg i&t

1
lim / ub,dr = P, £0.
=15 Jig

The impulsive force may be caused by different circumstances: the funétiois
discontinuous aty, the Lagrange multiplieg is discontinuous atp or both. We restrict
ourselves to the case of smooth constraibitsso that the impulsive force is caused by a
discontinuity of the Lagrange multiplier.

Now, we derive the equations for impulsive motion (see [1]) by using d’Alembert’s
principle of constrained maotion.

Let L be a Lagrangian system subjected to non-holonomic constréifits: 0, where
@4 = at(q)¢“, 1 < A < m. The equations of motion of the system are derived from
d’Alembert’s principle:

(;m o QK> 8¢ =0 ©)
with 8¢* denoting the virtual displacements verifying the conditions

a,féq’( =0 (4)
where Q, are non-conservative ordinary forces (non-impulsive) apd= 9L /34" are the

linear momenta. By applying the classical procedure of Lagrange multipliers we obtain the
equations

d L "

a P 9q* = Q« + raa, .

Moreover, if we are in the presence of impulsive constraints, then the virtual

displacementsq* must also be compatible with these constraints. In factlet= bl ng*
be an independent set of impulsive constraints; then the virtual displacements must verify
equation (4) and also the supplementary conditions

b 8g° = 0. (5)

Since the discontinuous velocity changes are produced by the action of the impulsive
constraints, then

d d oL
lim —pe———— 0, )8g°| dt =0.
1~ig Ji [<dtp dg* ¢ ) 1 }

Note thatdL/dg* and Q, are bounded and the variatiodg“ are not functions of time.
Then if we integrate the equations of motion and take limits we finally obtain the relationship
between the pre-impulse and post-impulse states:

(P — (Pe)r]dg* = 0.
In other words, the change of momentuxp, satisfies the following relations
Apcdq© =0
or, in terms of Lagrange multipliers to take into account conditions (4) and (5),
Ape = haal + i bl (6)
Moreover, observe that the velocity changes always verify the condition
a*Ag“ =0
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because the constraints' are permanent. Thus, if the Lagrangian is of the fdrm: T —V
whereT is the kinetic energy of a Riemannian metgion the configuration space, that is,
L= %gw(q)c]“c']” — V(g), then the momentum changeg, satisfy the relation

a?Ang"X =0. )
From (6) and (7), we obtain that
Aaalal g + i, blalg"* =0

which determines the Lagrange multipliérs in terms of the Lagrange multipliegs., since
the matrix(a;‘afg”) is regular because the matrix“*) is positive definite.

Then, in order to know the post-impulse momenta from the pre-impulse momenta, it is
necessary to determine the remaining Lagrange multipljers,For that, we need to use
additional physical conditions about the considered mechanical system as freezing, elasticity,
tangency conditions, etc.

3. Mechanical systems in implicit form

In this section, we consider the symplectic formulation of regular Lagrangian systems, and
its implicit representations, see [13].

A mechanical system is given by a Lagrangian functiodefined on the tangent bundle
T Q of a configuration manifold2. In what follows, we assume thdt is regular, that is,

the Hessian matri;(aqf’fﬁ) is non-singular, wher&*, ¢¢) are induced coordinates ahQ
from local coordinategg”) on Q. Denote byr, : TQ — Q the canonical projection.
We denote by/ the canonical almost tangent structure, andCbyhe Liouville vector

field on T Q locally defined by

J =dg* ® 9 C=g" 0
=Yg 9g~ =4 ag~
respectively. Putw; = —d(J*(dL)), where J* is the adjoint operator off defined by

J*a(X) = a(J X) for any one-formx and vector fieldX. The two-formw; is symplectic
if and only if L is regular. In such a case, B, = CL — L denotes the energy function,
there exists a unique vector fiefg, solution of the equation

igLa)L = dEL

which in addition is a SODE (that isf¢; = C) and whose integral curves are projected
into the solutions of the Euler-Lagrange equations [4].
SincelL is regular,w; defines a Poisson bivectar; by

Ap(a, B) = o (BL(®), 8L.(B)) for all one-formsa, 8 on T Q

wheretl; = bzl andb; (X) = ixw,, for any vector fieldX on 7 Q. Thus, if the mechanical
system is constraint-fre€’(= T Q) theng, = t, (dE,) yields the dynamics.

A simple computation shows that the induced correspondence between vector fields and
one-forms onf Q is given by

0 0P« d pe .
bL = P — pX qu + L qu
ag¥ agx ag¥ agx

d P
by < . ) = - p dqx
ag~ agx
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wherep, = 7. Therefore, = bt is given by

ad

dg) = —W"* ——

11.(dg") So
6L(dq*) = Wt R w0
L\4g) = 36]X Y aqx

where (W*x) denotes the inverse matrix of the matrix whose entriesiigre = g’q’x and

_ op« _ opy
agx ag~

3 (o 3°L +8L —
9q" T 9gvaqn T ag° 9g<”

An alternative way to write the equations of motion based on the geometry of tangent and
cotangent bundles was proposed by Tulczyjew [12—-14].
Starting with coordinategg®) on Q, we introduce coordinates
(q*.4") onTQ
(q", po) onT*Q
(qKaqKaaKabK) On T*TQ
(q’(s pqu.Ks pK) On TT*Q
Tulczyjew defined a canonical diffeomorphism 77*Q — T*T Q as follows

Ry

Thus, we have

&L =4q"

a(q", pe. 4", Pe) = (@, 4", P, Pe)-
Consider now the submanifol® = «~1(dL). Thus we have
oL oL
ag T aq‘K}
which states that the local equations definiDgare just the Euler—Lagrange equations for
L.

D = {(CIK, pkvqu pl() € TT*Q'pK =

Remark 3.1t should be noted that is a symplectomorphism from the symplectic manifold
(TT*Q, wp) to (T*T Q, wrg), Wherew, is the complete or tangent lift of the canonical
symplectic formwy on T*Q to TT*Q. Moreover, D is a Lagrangian submanifold of
(TT*Q, wg), even if L is not regular.

4. Non-holonomic one-sided constraints

We now consider now a modification of the formulation of the previous section, to include
the Chetaev forces due to the presence of non-holonomic constraints.

Let the configuration space of a mechanical system be a marffoldihe Lagrangian
function L : TQ — R is supposed to be regular, so that is a symplectic form on
T Q which defines a Poisson tensar. We assume that the system is subjected to non-
holonomic one-sided constraints determined bgudmanifoldC of 7Q with boundary
where the boundaryC is assumed to be orientable.

A submanifold N with boundary of a differentiable manifold/ is understood as a
subsetN of M, locally defined by equations of the ford“(x) = 0, ¥(x) > 0; so,N is a
manifold with boundary in the usual sense. Then, the interioN didenoted by IntV) is
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a submanifold ofM and the boundarg N of N is a submanifold of\f of codimension 1
with respect tonN.

We denote byr'C the tangent bundle of, defined as follows. Ifc € C, thenT,C
denotes the tangent vectols € T, (T Q), such thatX (®4) = 0, for any A. If x is an
interior point, then7,C is the usual tangent space (ifitis a submanifold ofr' Q). The
annihilator (7 C)° of TC is locally generated byd®*}, i.e.

(T C)° = sparjd®”}.
Recall that a one-forre on T Q is semibasic if it belongs to the image &f.

We consider a vector subbundle &f(T*(T 0))¢ as follows

Fo sparfJ* (dd?)(x)} if xelIntC
Dx = = ; -
C spartsr @ (), @), fu)  if x e dC
where f,, 1 < a < U are semibasic ong-forms.

The setF; is a vector bundle ove€ in an extended sense since not all of the fibres
have the same dimension. It represents reaction forces of the constraints (also known as
the Chetaev bundle). The one-formi$*(d®4)(x)} generate reaction forces due to the
permanent constraints. The one-fou(dy)(x) is due to the one-sided constraint. The
one-forms{ fi, ..., fy} represent instantaneous reaction forces, due to the persistence of
some instantaneous constraints.

We may assume that there are in addition external forces acting on the system. These
forces are introduced as another vector bun@leover C which is a vector subbundle of
JX(T*(TQ))¢, 1.e. it contains only semibasic one-forms. We also require thaand F>
have a trivial intersection, that ig; N F>, = 0, and we consider the Whitney sufa @ F.

We assume that the following two conditions hold
() (admissibility)

dim(7C)° = dim J*(T'C)°
(i) (compatibility)
JNTO°N((TO)) =0

where the orthogonal compleme(rmri‘)o)L is defined with respect to the Poisson structure
Ay given by the symplectic formu, .

Remark 4.1This condition is trivially satisfied if there are no permanent constraints.

Leta : TT*Q — T*T Q be the Tulczyjew diffeomorphism. We define an application
that extends triviallyy;

&:TT*Q x7o T*TQ —> T*TQ x19 T*TQ
by

a(w,r) = (a(w),r).
The mapa is again a diffeomorphism.

Remark 4.2Note thatTT*Q xro T*T Q is meaningful since it was defined as the set of
couples(w,r) € TT*Q x T*T Q such that

T]TQ(U)) = JTTQ(V)
wheremy, : T*M — M denotes the canonical projection.
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Let us consider the set
D=aYdL + (F,® F2), L N (TO))Y).

Starting with coordinategg®) on Q, consider the induced coordinates i, T*Q,
T*TQ,TT*Q andTT Q as in the precedent section. Then

a(q®, pe, 4%, Pe;s 4%, 4", ac. be) = (@%, 4%, pe. Pe; 4%, 4%, ac, by).
If (w,r) e TT*Q xro T*T Q, we can locally write
w = (‘]K’ pKa qKa pK)
r= (CIK, C]K, Ay, b/c)
so that(w, r) € D is equivalent to
@*. 4", pe, ) € AL + (F1 @ F?)
and
(@*. 4", ac.b) € FLN((TC))*.

The elements off, are locally written as¢*, ¢*, f., 0), or equivalently f, dg*, so that
(w,r) € D is equivalent to the following

. .. OL Gl aL
(q g T g *fk’aqw)
if (¢“,¢") € IntC
« -« OL adA v
(q g T g TR
if (¢“,¢*) e dC

(qu qu pks pK) -

P JL
+ fie +V(fades aq)

K

and
b, =0.
We conclude thatw, r) € D is written as
_ JL
P = 2ar
. oL ! .
Pk = +)\A . +H’ . +fK+U(fa)K
dg~ g~ ag*

where we letu = /i, v* = 7 on 9C andu = u® = 0 on IntC to unify notations, and also
b, =0 a, arbitrary
Hereafter we will denote, by Ap,.

4.1. Interpretation of the admissibility condition
Since
(T C)° = sparjd®”} J*(TC)° = spar{J*(dd*)}
the equality dinaZ C)° = dim J*(T'C)° means that the map
J*(TC)° — J¥(TC)°
is an isomorphism at each point 6f. Hence,{%dq"} are linearly independent, i.e. the
reaction forces are independent.
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4.2. Interpretation of the compatibility condition
We have
(T = {a € THT Q) | Ar(e, (TC)®) = 0).

Since(T'C)° = sparfd®*}, this means thah ; («, dd4) = 0 for anyA. So, ifa belongs to
the image of/*, then it is a semibasic one-form. In local coordinates we haveq, dg*,

anda € ((TC)%)* is equivalent to saying that; (o, d®*) = 0 for any A. This is in turn
equivalent to

a'(?;j;j W =0 for any A. (8)
So, the compatibility condition

JTOHN(TO* =0
is locally equivalent to the condition that the following matrix is non-singular

DA Hp8
(oo ). ©)
qc 9qx

The other condition in the definition dd requires that € F; N (~(Té)°)¢.
If we write r = Ap,dg®, then from (8) we have that € ((T'C)%)"' is the same as
requiring

Bloks
Ape——W* =0 for any A. (10)
agx
But r € F; means
- _ _ = - A0r _aw
= py =T @0 @) + 50, = (o )
with 2 = 7* = 0 on IntC. Hence
- 9P 9w o
Ape = Ay ——— + i + V' (fa)e
ag~ ag~
and replacing conditions (9) so thatelongs to the intersection, we obtain
- 001 9B oV 9B -
AT — W W V(f) W = 0. (11)
agx dgx agx 9gx

This means that if. andv* are given, we can compute,. In particular, ifx = 0 and
v* = 0 we haver, = 0 for any A (which is the case identically on Ia¥).

Remark 4.3If the Lagrangian is of the fornk = T — V whereT is the kinetic energy of a
Riemannian metrig on the configuration space, that is—= %gw(q)c']"q" —V(g), then the
compatibility condition is automatically satisfied since the magi., ) is just the matrix

(8ev)-
Remark 4.4We have supposed that the boundaryCos connected, but it is clear that we

can consider the case of a boundary consisting of two or more components. We only need
to define the Chetaev bundig at every component (see example 8.1).
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5. Motions

We will describe the motions for a mechanical system subjected to one-sided non-holonomic
constraints as defined in section 4.
A motionis a curve inT*Q xo T*T Q, i.e. a pair of curvesn, ¢) wheren is a curve
in 7*Q andg is a curve inT*T Q such thatrg on = 19 o rrp 0 ¢ = y. We assume that
the projection curver in Q is continuous and differentiable from above. The curyemd
@ are not continuous in general, but posses lateral limits and are differentiable from above.
The jumping curveAn is defined as follows
An(t) = ton(™) — ™)
where
%0 0@ — Trioin (T D)
The curveg is only auxiliary, and only the jumping curve is relevant.
The equation of motion is the condition that the image of the c@ivé\n) is contained
in D. Thus if we write
n(t) = (q“ (1), pe (1))
n(t) = (q“ ), pe(t), §* (1), pe (1))
An(t) = (g" (1), ¢" (1), Apy, 0)
the above condition is equivalent to the following equations

)
P = g~
L _OL L, et e
P = 8C]K A 8q’< Maq" K
BT Y L
Ape = Ag—— + fl— + V" (fa)«e
ag~ ag~

the Lagrange multipliers.,, i, A4, i satisfying the conditions stated in section 4. From
these local equations it is clear thais a curve of momenta, andp is a curve which at
each point gives the jump in momenta produced by the impulsive forces.

6. Holonomic one-sided constraints

In this section, we modify the constructions of section 4 for holonomic one-sided constraints.
This is not a particular case of the non-holonomic situation.

It shoud be noted that the projection of the submanit®ig not necessarily the whol@.
This is just the case of holonomic one-sided constraints. In fadf; ket a submanifold with
boundary inQ, that is,C is locally defined by equations of the forgr' (¢) = 0, ¥ (¢) > O.
From C we obtain a suitable submanifold of 7Q with boundary given by the local
equations

CI>A=(¢A)C=O \pzwu>0
where f¢ = dr f (resp. f* = nj, o f) denotes the complete (resp. vertical) liftT@ of a

function f on Q. These equations mean thatis locally defined as follows
. L 09?
g . ¢) =4 3¢K =0 (12)
q
Y(g“,q") =v(q") > 0. (13)
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The Chetaev bundle becomes
sparf(J*dd*)(x)} if x eIntC

F), = _ ~
(7 sparf(J*dd*)(x), To(dY) (%), fa(x)} if x € aC.

Equations (12) and (13) mean that we are definihgo be the usual tangent bundle
T C of C. Another possibility would be to take the tangent bundle consisting of the interior
tangent vectors at the points of the boundary, and the ordinary tangent space at the points
of the interior ofC, but as we will see later, that is not the better choice.

So, C is defined along”. A direct computation shows that our formalism is the natural
extension of the one previously developed by Lacomba and Tulczyjew [6].

7. Mixed constraints

Another interesting situation occurs when we have mixed constraints, that is, the functions
®4 are ordinary non-holonomic constraints but we have in addition a holonomic one-sided
constrainty (¢) > 0. We can again define a submanifold with boundargf 7T Q given by
the following equations

o4 =0 v =1y">0,

which is locally written as follows

4 (g“, k) =0 (14)
V(" k) =v¢(q") >0 (15)
and the Chetaev bundle is given by
Fo. - {spar{(]*d@")(x)} if xelIntC
sparf(J*dd™) (x), 75 (dy) (x), fa(x)} if x €dC.

8. Examples

Example 8.1 (Holonomic permanent and impulsive constraits).describe the motion of
a particle in the segment+ y = 1, x > 0 andy > 0, that is, the particle collides with the
walls x = 0 andy = 0. In order to study this system we introduce the regular Lagrangian

L(x, y,%,5) = ;&% +5%)
and the constraints
¢p=x+y—1=0
Y1=x2>0
V2=y2>0.
The changes of momenta are given by
Apy = A+ i1
Apy = L+ iz
wherel =0if0<x < 1; i1 =0if x >0 andji, =0 if y > 0.
Thus, ifx = 0, the changes of momenta are determined by the algebraic equations
Apy = A+ i1
Ap, = A
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and, by

Apx = )_V

Apy =A+ U2

if y=0.
The compatibility condition determines the multipligrin function of the multipliers
1 or 1o, Therefore, ifx = 0,

(Apxs Apy) = (Ml _Ml>

27 2
and
2 A2
A)mAv =\——F5 45
(Apx, Apy) ( 5 2)
if y=0.

If we suppose that is the coefficient of restitution of both walls, = 0 andy = 0,
then we will obtain that
(X1 — X0, y1 — yo) = (1 + &) yo, —(1 + ) yo)
or, in other words,
X1 = eyo
y1= —eo.
Example 8.2 (Non-holonomic impulsive constraint&hile moving in a vertical plane Oy,
a circular disk of radiusk and massn hits a rough wall determined by the ax@3x.
Assuming that the motion is planar, the system possesses three degrees of freedom: the
coordinatest andy of the centre of the disk anglthe angle between a poitt of the disk

and the axisOy.
The system is described by the Lagrangian function

m .
L=>502+y2+k%%

wheremk? denotes the moment of inertia of the disk. In addition, there are two impulsive
constraints along the ling = R:

Vv=y—-R
V' =% — R6.
The Chetaev bundle is determined by
F1 = sparidy, dx — R d6}
if y=RandF, =0if y > R (i.e. free motion).
The algebraic equations for the instantaneous changes of momenta are
Apy = mXxy —mxg ="V
Apy=my; —myo= [
Apg = mkzél — mkzéo = —Rv.
Without additional information these are the equations for the changes of momenta, i.e. the
relation between the velocities after and before the collision. In fact, we need two new

equations in order to determine the final velocity of the disk.
For example, we study two particular cases.
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(i) After the collision the disk rolls on th@x axis. In such a case, we obtain the
following relations between the components of the final velocity:
y1=0 X1 — RO, = 0.
After straightforward algebraic computations we obtain that
RZXO + széo
X1=——F>-
YT k24 R?
Compare with [1].
(i) Elastic collision without slipping. Since the collision is elastic than= —yo, and
the no slipping condition means thét — R6; = 0. Thus, the final velocity is given by
o 4. 61) R%%o+k?ROy . R%io+k?R%)
X1, ) = T )
L K+ R " k21 Re
Example 8.3 A sphere of radiug and mass 1 rolls without sliding on a horizontal plane.
At the instantr, the sphere hits a rough wall determined by the plade. Determine the
post-impact velocities (see [8]).
The system is described by:
(i) the regular Lagrangian function

L= %(;&2 + 32+ 22+ kP07 + ¢° + Y* + 29 cosp))
(i) the permanent constraints (the sphere rolls without slidding orx the plane):

¢1 =% —résiny +r¢sind cosy =0
¢ =y +rocosy +rgsingsing =0
¢p3=2=0

or, after algebraic manipulations,
¢1 = xcosy + ysiny + r¢sind =0
¢y = xsiny — ycosy —rf =0

(i) the instantaneous constraints en= R:
U =x=0

U=y —r¢gcosd —ryr =0
W3 = 6siny — ¢ sind cosy =0
but sincer¥; = W; — ¢1, we consider only; and W, as instantaneous constraints.
The Chetaev bundIé&; is given by

sparjcosy dx + siny dy + r siné dy, siny dx — cosyr dy — r dd, dz}

if x> R
F| =
! sparicosys dx + siny dy + r sinf dy, sinys dx — cosy dy — r df, dz, dx,
dy — rcosf dp — r dyr} if x =R.

The relation between the pre-impact and post-impact momenta is obtained from the
equations:

Ap, = A1 COSY + AaSiny +
Apy = A1SiNyY — A, COSY + v
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Ap, = A3

Apg = —1A2

Apy, = riy1Sing — rv cosf
Apy = —rv.

From the compatibility condition we determine the Lagrange multipligrsi, and 3
in terms of the multipliers. andv by using equation (11). Therefore,

2
Ap, = m#
2
Apy = mv
Ap, =0
rk?siny rk?cosy
Apy =

[ R I R

k? cosyr k% sinyr
% v

k2 +r? k2 +r2

Ap, = —rsinf (

Apy = —rv

) — rv Ccost

or, in terms, of velocities,

A).C:).C]_—).Co:kz_i_rzu
. r?
Ay:)d_yozmv
Az=721—20=0
. . 7 sin r COS
AQzé’l_%:k2+1rp2”“_k2+:vp2”
AG = fr— o= — _r <cos¢xu sinyr v)
sind \k2+r2"  k?+r?
A15.”:Ipl_wg.ﬁozrcos«9<coswM sinyr v)_rv'
sing \ k2 +r2 k2 +r2 k2

In order to obtain a complete description of the post-impact velocities it is hecessary to
require additional information about the system.

For example, assume that the sphere remains rolling without sliding on thexptarte
after the impact. Then, we have the following relations between the post-impact velocities:

x1=0
5’1 — r(/'J]_ cosH — rl/./‘]_ =0.

Both conditions determine the Lagrange multipligrendv as functions of the pre-impact
velocities, that is,

_ Xo(k*+r?)

72
_ KP(k* + r?) (3o — r¢o cOSY — rijro)
- r2(2k2 4+ r?) '

The description of the collision of two balls runs along the same lines. In fact it can be
modelled as if each one of the balls was hitting a vertical wall along the tangent plane
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to both at the impact point. If the two balls have equal radius, the one-sided impulsive
constraint is given by

=@ —-XP+0-V’+@—-27=>47

where(x, y, z) and(X, Y, Z) are the coordinates of the centres of the corresponding spheres
and ¥ defines a codimension one boundary given by the smooth quadric:

x=—XP+O-=-Y)P+@z—-2)°=42

9. A projector for the permanent non-holonomic constraints

Here we construct a projector which is defined whenever the system is subjected to
permanent (i.e. those present all the time) non-holonomic constraints. This projector gives
an algebraic way of showing that Lagrange multiplizgscan be computed in terms @f
andv“, according to (11).

From the compatibility and admissibility conditions we have the following splitting of
(T Q):

THT Q) = (JX(TO)%), & (TCO)) (16)

for all x € C (see [2]). Thus, each covectar € T*(T Q) splits in a unique way as
o = ay + oy, Whereaq € (J*(TC)O)X anda; € (TC)%L. Then, we can construct two
complementary projector® and P defined bny(a) = ay and P, (o) = ay.

Now, notice that- = Ap, dg* € (TC)%*, thenP(r) = r. Thus,

Ap, dg* = P(Ap, dg*)
- adA oW
_p [ i >K]

8q ag~

Therefore, we obtain the expression

) + P (fa)e dg*).

AU _
Ap, dg* = P ( dg*“ ) + VP ((fa) dg*) (17)

where the Lagrange multipliess, which are associated to the permanent non-holonomic
constraintsd4 do not appear explicitly.

Example 8.1 continued.The projectorQ is
- 1/90 d
Q=— <+> ® (dx + dy).
x dy
If x=0

Ap1dx + Appdy = P(jig dx)
= 11 (dx — J(dx + dy))
= jia (3dx — 3 dy).

ThusAp; = % and Ap, = “1 , as the regularity condition establishes.
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Also, if y =0,
Apidx + App dy = P(jio dy)
= 12 (dy — 3(dx + dy))
5 (—%dx + % dy) .

Il
=

SIS

ThusApy = —%2 and Ap, =

10. A projector for the permanent impulsive constraints

In the case where some of the impulsive constraints remain after the impulsive force action,
we define here another projector, which allows us to compute the new momenta in terms
of the old momenta.

Denote byF; the vector subbundle, along the points ofdhtlocally generated by the
one-forms

span{75 (5;’ dg*), P((f)s dq”)} :
Let us consider a splitting
T"TQ=F&S
along IntC, i.e. we havel;TQ = (F1)x @ S, for any pointx € IntC.
Denote byQ and’P the complementary projectors:
9:T'TQ — F,
P:T*TQO — .
From (17) we obtain that
P(Apcdg*) =0
or
P((p)1dg*) = P((pe)odg)
where (p,)o and (p)1, 1 < « < dimQ are the momenta before and after the impulsive

force acts, respectively. y ;
Suppose€(p, )1 dg© belongs toS; thenP((p,)1dg*) = (p,)1dg* and

(p)1dg" = P((p)odg®).
Then, it is possible to determine by projection the momenta after the impwsg, from
the initial momenta(p, ).
Assume that we are working with a family of impulsive constraMits= a¢(g)¢* = 0.
We also assume that there are no permanent constraints or they have been eliminated through
the projectorP. If the impulsive constraints remain after the impulse, it means that
(g )1=0 (18)
where we denote byg*); the velocity after and byg*)o the velocity before the impulse
takes place. If the Lagrangian is of kinetic type
L= gkquqx - Vi(g)
we have that relation (18) linear in velocities, is transformed into a relation linear in momenta

Olf(lgkx (pK)l =0. (19)
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If we now choose
Fy = sparfJ*(dv™)}
S={aeT"TQ)a(Xy:) =0}

we obtain the direct sum decompositii7 Q = F1 & S, since ;1N § = 0 because the
matrixC = (C*) = (atab g**) is regular g, , are the components of a Riemannian metric).

The projectorP : T*T Q — S has the local expressioh = id — O, where
Q = CopXye ® J*(dW)

andC,, are the entries of the inverse matrix @f It satisfies

(p)1dg" = P((p)odg). (20)
Alternatively, we obtain
Apc dg* = —O((pe)odg"). (21)

Finally, the relationship between momenta before and after the instantaneous impulse
is given by

()1 = (Po — Capa® g @ (py)o

or in terms of velocities

(@)1= ()0 — Caparl g b4 )o.
Remark 10.1The result is similar if we suppose that there exist permanent nhon-holonomic
constraintsp#, in addition to the impulsive constraints’ = «“4“. Then, we choose

F1 = spanP(J*(d¥*)))

§S={aeT"TQ)a(Xg) =0}
whereW? = P(J*(dw))(I") beingT" an arbitary SODE vector field arfd is the projector
constructed from the decomposition (16). In coordinateS]?d%?f dg*) = B¢ dg* then
Ve = Bag*.

If we suppose that the impulsive constraints remain after the impulsegft{gf), = 0.

Since we must also have

0= 8¢ (22)
we deduce as in the previous case that

(P)1dg" = P((p)odg”). (23)
or

Ap, dg* = —Q((pc)odg") (24)

whereP is the projection ovelS, and Q is projection overF.
In coordinates,

(P)1= (o — CapBe“ " BL(py)o
or in terms of velocities
@)1= ("o — CapBEE™” BL (G o

where(C,, is the inverse matrix Of,B,fg"X,B)b().
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As a consequence of our construction of the proje@tpwe obtain Carnot's theorem,
relating the kinetic energy before and after the impulse, provided instantaneous constraints
remain.

Theorem 10.2 (Carnot’s theorendf. the instantaneous constraints remain, then the
following relationship between momenta before and after the action of the impulsive force
holds:

(P)1& " (Py)1 — (P)og " (Py)o = —((P)1 — (P& ((Py)1 — (Py)0)-

Proof. Since the impulsive constraints remain after the impulse we deduce, because of
(22),

(P18 (Py)o = (P)18** (CarBl 8" ¥ BL(Py o+ (Py)1)
= (B5 (@) DCuwBE G o — (P18 (Py)1
= ()18 " (Py)1-
So, we have that
(P11 — (P)0)&*((py)1 — (Px)o) = ()18  (Py)1 + (P08 (Px)o — 2(p)18* (Py)o
= (P)og " (Pyx)o — (P18 M (Py)1-
O

Remark 10.30bserve that Carnot’'s theorem is evident, since it is nothing other than the
Pythagoras theorem:

Ix — P2 = x> — [Px)?

since the projectoP is orthogonal.

Example 8.2 continued.Consider the case where the constraints remain after the collision,
ie.
y1=0 X1 — RO, = 0.
Denote byWw; = y and W, = x — R6. The projectorQ is defined by
Q= > (CarXue ®J*(@W")

1<a,b<2

whereC,, is theab entry of the matrix
km
0 k?+R?

v, _ L1 19 R 9
e YT moax  kZm ao’
Then, we obtain the post-impact momenta from the pre-impact momenta by using the matrix

expression of the projecta? as follows
2

-
Pyl ) = ) 5 Pylo |-
(Po)1 Rz O R (Po)o

k?+R? k?>+R?

and

m dy
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11. Another type of impulsive motion

It is possible to extend our above constructions to a different setting where it is no longer
necessary to restrict our study to submanifolds with a boundafy®f
We consider the submanifol# (without a boundary) off Q locally determined by
the vanishing of the permanent non-holonomic constraints= 0. Now we introduce a
generalized vector bundle spaég over H where not all of the fibres have, in principle,
the same dimension, such that it verifies
JNTH)® € F1 € JNTXT Q)

along the points off. For the sake of simplicity, we will suppose that the subset of points
x € H where(J*(TH)%), C (Fy), is a submanifoldd of H.

Assuming the admissibility condition, ditfi 7)° = dim J*(7 H)°, and the compatibility
condition, J*(T H)° N ((T H)®)* = 0, we obtain that the dynamics of the impulsive motion
is also described by the subset

D=aYdL + (F1® F»), F, N (TH)%)Y)

of TT*Q xro T*TQ, where F, is a subbundle of/*(T*T Q) which introduces the
ordinary external forces.

Remark 11.1As in remark 4.1, the admissibility condition is trivially satisfied if there are
no permanent constraints.

The equations of motion are
L
ag«

Also, the impulsive jumps of momenta are given by
Apy dg* € Fi.
If we suppose thatFi),, x € H, is determined by
sparlJ/*(d®"), f)
where f¢ are semibasic one-forms, then
Apidg* = AaJ*(dp") + fia S
The compatibility conditions imply that the Lagrange multipliérs can be explicitly

determined from the remaining Lagrange multipligrs
Now, we can define a project@ as in section 9, and we obtain

Apidg* = 1 P(f%).
Example 11.2 (Oblique central impact of two particléSpnsider two small smooth spheres
modelized as particle$; and P, of massn andM in collision with one another. We choose
the x- and y-axis, respectively, along the line of impact and along the common tangent to

the surfaces in contact. Take coordinatesy) and (X, Y) for both particles, respectively.
The total kinetic energy of the system is given by

K = 3m(G% 4% + M(X? + 72

15:( GF]_@Fz.

The Chetaev bundle of reaction forces is given by

_ ] if x #X or y#£Y

Fi =
17 ] sparidx — dx, dy — dr} if x = X and y=Y
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The changes of momenta during the collision are then

Apx = 1 Apy = 2 Apx = —1 Apy = —p2.

Observe that these conditions give us the conservation of the total momenta in the collision,
that is, the vector sum of the momenta after the collision is equal to the vector sum of these
guantities before the collision.

By additional assumptions it is possible to find the values of the Lagrange multipliers
p1 and po.

Assuming that there are no vertical impulsive forces acting during the impact, the
vertical component of the momentum of each particle is unchangedpi.p. = (py)o and
(py)1 = (py)o. Thus,uz = 0.

If we know the coefficient of restitutiom (0 < ¢ < 1), then we have, therefore, the
following relation between the relative velocities after and before the impact

(X)1— ()1 = —e((X)o — ()o)-
After some computations we obtain that

mM . .
p=o M(l+ e)((X)o — (x)o)
and
. M . m . Me . )
()1 = m(x)o + o M(x)o + po— M((X)o — (X)o)
1= Ko+ " (io— " (K0 (D)o).
m+M m-+M m+M
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