
Mechanical systems subjected to impulsive constraints

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 5835

(http://iopscience.iop.org/0305-4470/30/16/024)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 5835–5854. Printed in the UK PII: S0305-4470(97)83505-6

Mechanical systems subjected to impulsive constraints
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Abstract. A geometrical description of mechanical systems subjected to impulsive non-
holonomic constraints is given. Their motions are determined by means of suitable projection
operators which allow us to evaluate the instantaneous jumps of momenta due to the action of
impulsive reaction forces. Several paradigmatic examples are investigated from this viewpoint:
a disk falling into a plane, a rolling ball hitting a wall and the collision of two balls.

1. Introduction

Let us start with three paradigmatic examples. Imagine a disk falling freely on a horizontal
plane such that, after collision, it remains rolling on the plane. Assume that a ball rolls
without slipping over a surface and, suddenly, it hits a wall. Or, finally, imagine the collision
of two balls. The problem is how to describe in a geometrical way the dynamics of these
mechanical systems. In classical, and also recent, books [1, 8, 9, 11] (see also [15]), these
kinds of problems are widely treated, and some analytical solutions are given. The above
examples are subjected to impulsive forces, that is, forces which act instantaneously, and
have non-holonomic constraints. So, since the motion of a mechanical system described
by a differential equation can be integrated if some initial data are given, such as positions
and velocities, when an impulsive force acts, the new required initial data suffer a jump
after the impulse. The problem then becomes how to know the new initial data after
the impulse. This is accomplished mostly by using the particular physical conditions
of the system: elasticity, Carnot’s theorem, etc. The three examples above fit into the
category of impulsive constraints, that is, the impulsive forces arise from the discontinuity
of the constraints themselves. Indeed, they have one-sided holonomic constraints. In the
first example, an impulsive non-holonomic constraint appears (the rolling condition) which
remains after collision and in the second and third one, several possibilities appear depending
on the conditions after the impulse.
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The aim of this paper is to provide a geometrical framework for describing systems
subjected to impulsive constraints. Our inspiration is the geometrical description of non-
holonomic mechanical systems as implicit differential equations introduced in [5] (see also
[12, 13]). In our case, the constraint submanifold is a submanifoldC̃ of the velocity space
TQ with boundary,Q being the configuration manifold. In the interior ofC̃ the permanent
non-holonomic constraints act while on the boundary impulsive constraints also appear.
We introduce the Chetaev bundle of reaction forces, and if two conditions of admissibility
and compatibility are satisfied, the dynamics of the system is well defined. Moreover, a
projector is defined which allows us to obtain the initial conditions after collision from those
before collision. Projectors were previously used only to describe permanent constraints
[10, 7, 2, 3]. As a by-product we obtain a geometric formulation of Carnot’s theorem. Our
results extend those previously obtained by Lacomba and Tulczyjew [6] for the case of
one-sided holonomic constraints.

In section 11, the theory is extended to a more general situation, in the sense that
the impulsive forces appear in a submanifold whose codimension is not necessarily 1.
The geometrical description is very similar, and, assuming again the admissibility and
compatibility conditions, the dynamics is ellucidated.

2. A mechanical motivation: Impulsive forces

We begin with a discussion of classical mechanical systems with impulsive forces, see
[1, 8, 9, 11].

Consider a system ofm particles in R3 such that the particlej has massMj .
We introduce coordinates(q3j−2, q3j−1, q3j ) for the particle j . Suppose thatFj =
(F 3j−2, F 3j−1, F 3j ) is the force acting on the particlej .

The change of velocity of the particlej in an interval [t0, t1] is determined by the system
of integral equations

q̇κ (t1) = dqκ

dt
= 1

Mj

∫ t1

t0

Fκ(q, q̇, τ )dτ + q̇κ (t0) (1)

where 3j − 26 κ 6 3j . The integrals
∫ t1

t0

Fκ dτ , 3j − 26 κ 6 3j are the components of

the impulseof the forceFj and equation (1) establishes the relation between the impulse
and the momentum change, i.e. ‘impulse is equal to momentum change’. Equation (1) is
a generalization of the Newton second law, in the sense that it allows us to consider the
case of velocities with finite jump discontinuities (see [11]). This is precisely the case of
impulsive forces, that is, an impulsive forceF generates a finite non-zero impulse at some
time instants. Then, ifF is impulsive there exists an instantt0 such that

lim
t→t+0

∫ t

t0

F dτ = P 6= 0. (2)

Equation (2) implies that the impulsive force has an infinite magnitude, i.e.|F | = +∞,
but we are assuming that its impulseP is well defined and finite. It can be mathematically
thought of as a Dirac delta function concentrated att0.

Hereafter, we rename the coordinates and the forces as(qκ) and(F κ), 16 κ 6 3m = n.
The impulsive forces may be caused by constraints. These kinds of constraints are

called impulsive constraints. If we are in the presence of non-holonomic constraints of type
9 = 0 where9 = bκ(q)q̇κ , the constraint force is given by

Fκ = µbκ
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whereµ is a Lagrange multiplier (see below). Then, this constraint is impulsive att0 if

lim
t→t+0

∫ t

t0

µbκ dτ = Pκ 6= 0.

The impulsive force may be caused by different circumstances: the functionbκ is
discontinuous att0, the Lagrange multiplierµ is discontinuous att0 or both. We restrict
ourselves to the case of smooth constraints9, so that the impulsive force is caused by a
discontinuity of the Lagrange multiplier.

Now, we derive the equations for impulsive motion (see [1]) by using d’Alembert’s
principle of constrained motion.

Let L be a Lagrangian system subjected to non-holonomic constraints8A = 0, where
8A = aAκ (q)q̇

κ , 1 6 A 6 m. The equations of motion of the system are derived from
d’Alembert’s principle:(

d

dt
pκ − ∂L

∂qκ
−Qκ

)
δqκ = 0 (3)

with δqκ denoting the virtual displacements verifying the conditions

aAκ δq
κ = 0 (4)

whereQκ are non-conservative ordinary forces (non-impulsive) andpκ = ∂L/∂q̇κ are the
linear momenta. By applying the classical procedure of Lagrange multipliers we obtain the
equations

d

dt
pκ − ∂L

∂qκ
= Qκ + λAaAκ .

Moreover, if we are in the presence of impulsive constraints, then the virtual
displacementsδqκ must also be compatible with these constraints. In fact, let9r = brκ ṅqκ
be an independent set of impulsive constraints; then the virtual displacements must verify
equation (4) and also the supplementary conditions

brκδq
κ = 0. (5)

Since the discontinuous velocity changes are produced by the action of the impulsive
constraints, then

lim
t→t+0

∫ t

t0

[(
d

dt
pκ − ∂L

∂qκ
−Qκ

)
δqκ

]
dt = 0.

Note that∂L/∂qκ andQκ are bounded and the variationsδqκ are not functions of time.
Then if we integrate the equations of motion and take limits we finally obtain the relationship
between the pre-impulse and post-impulse states:

[(pκ)t0+ − (pκ)t0]δqκ = 0.

In other words, the change of momentum1pκ satisfies the following relations

1pκδq
κ = 0

or, in terms of Lagrange multipliers to take into account conditions (4) and (5),

1pκ = λ̄AaAκ + µ̄rbrκ . (6)

Moreover, observe that the velocity changes always verify the condition

aAκ 1q̇
κ = 0
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because the constraints8A are permanent. Thus, if the Lagrangian is of the formL = T −V
whereT is the kinetic energy of a Riemannian metricg on the configuration space, that is,
L = 1

2gκν(q)q̇
κ q̇ν − V (q), then the momentum changes1pκ satisfy the relation

aAχ 1pκg
κχ = 0. (7)

From (6) and (7), we obtain that

λ̄Aa
A
κ a

B
χ g

κχ + µ̄rbrκaBχ gκχ = 0

which determines the Lagrange multipliersλ̄A in terms of the Lagrange multipliers̄µr , since
the matrix(aAκ a

B
χ g

κχ ) is regular because the matrix(gκχ ) is positive definite.
Then, in order to know the post-impulse momenta from the pre-impulse momenta, it is

necessary to determine the remaining Lagrange multipliers,µ̄r . For that, we need to use
additional physical conditions about the considered mechanical system as freezing, elasticity,
tangency conditions, etc.

3. Mechanical systems in implicit form

In this section, we consider the symplectic formulation of regular Lagrangian systems, and
its implicit representations, see [13].

A mechanical system is given by a Lagrangian functionL defined on the tangent bundle
TQ of a configuration manifoldQ. In what follows, we assume thatL is regular, that is,

the Hessian matrix
(

∂2L
∂q̇κ ∂q̇χ

)
is non-singular, where(qκ, q̇κ ) are induced coordinates onTQ

from local coordinates(qκ) onQ. Denote byτQ : TQ→ Q the canonical projection.
We denote byJ the canonical almost tangent structure, and byC the Liouville vector

field on TQ locally defined by

J = dqκ ⊗ ∂

∂q̇κ
C = q̇κ ∂

∂q̇κ

respectively. PutωL = −d(J ∗(dL)), whereJ ∗ is the adjoint operator ofJ defined by
J ∗α(X) = α(JX) for any one-formα and vector fieldX. The two-formωL is symplectic
if and only if L is regular. In such a case, ifEL = CL − L denotes the energy function,
there exists a unique vector fieldξL, solution of the equation

iξLωL = dEL

which in addition is a SODE (that is,JξL = C) and whose integral curves are projected
into the solutions of the Euler–Lagrange equations [4].

SinceL is regular,ωL defines a Poisson bivector3L by

3L(α, β) = ωL(]L(α), ]L(β)) for all one-formsα, β on TQ

where]L = [−1
L and[L(X) = iXωL, for any vector fieldX on TQ. Thus, if the mechanical

system is constraint-free (C̃ = TQ) thenξL = ]L(dEL) yields the dynamics.
A simple computation shows that the induced correspondence between vector fields and

one-forms onTQ is given by

[L

(
∂

∂qκ

)
=
(
∂pκ

∂qχ
− ∂pχ
∂qκ

)
dqχ + ∂pκ

∂q̇χ
dq̇χ

[L

(
∂

∂q̇κ

)
= − ∂pκ

∂q̇χ
dqχ
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wherepκ = ∂L
∂q̇κ

. Therefore,]L = [−1
L is given by

]L(dq
κ) = −Wκχ ∂

∂q̇χ

]L(dq̇
κ ) = Wκχ ∂

∂qχ
+ RµνWνχWκµ ∂

∂q̇χ

where(Wκχ) denotes the inverse matrix of the matrix whose entries areWκχ = ∂pκ
∂q̇χ

, and

Rκχ = ∂pκ

∂qχ
− ∂pχ
∂qκ

.

Thus, we have

ξL = q̇κ ∂

∂qκ
+
(
−q̇µ ∂2L

∂q̇ν∂qµ
+ ∂L

∂qν

)
Wνκ ∂

∂q̇κ
.

An alternative way to write the equations of motion based on the geometry of tangent and
cotangent bundles was proposed by Tulczyjew [12–14].

Starting with coordinates(qκ) onQ, we introduce coordinates

(qκ, q̇κ ) on TQ

(qκ, pκ) on T ∗Q
(qκ, q̇κ , aκ, bκ) on T ∗TQ
(qκ, pκ, q̇

κ , ṗκ ) on T T ∗Q.

Tulczyjew defined a canonical diffeomorphismα : T T ∗Q −→ T ∗TQ as follows

α(qκ, pκ, q̇
κ , ṗκ ) = (qκ, q̇κ , ṗκ , pκ).

Consider now the submanifoldD = α−1(dL). Thus we have

D =
{
(qκ, pκ, q̇

κ , ṗκ ) ∈ T T ∗Q | ṗκ = ∂L

∂qκ
, pκ = ∂L

∂q̇κ

}
which states that the local equations definingD are just the Euler–Lagrange equations for
L.

Remark 3.1.It should be noted thatα is a symplectomorphism from the symplectic manifold
(T T ∗Q, ω̇Q) to (T ∗TQ,ωTQ), whereω̇Q is the complete or tangent lift of the canonical
symplectic formωQ on T ∗Q to T T ∗Q. Moreover,D is a Lagrangian submanifold of
(T T ∗Q, ω̇Q), even ifL is not regular.

4. Non-holonomic one-sided constraints

We now consider now a modification of the formulation of the previous section, to include
the Chetaev forces due to the presence of non-holonomic constraints.

Let the configuration space of a mechanical system be a manifoldQ. The Lagrangian
function L : TQ −→ R is supposed to be regular, so thatωL is a symplectic form on
TQ which defines a Poisson tensor3L. We assume that the system is subjected to non-
holonomic one-sided constraints determined by asubmanifoldC̃ of TQ with boundary,
where the boundary∂C̃ is assumed to be orientable.

A submanifoldN with boundary of a differentiable manifoldM is understood as a
subsetN of M, locally defined by equations of the form8A(x) = 0, 9(x) > 0; so,N is a
manifold with boundary in the usual sense. Then, the interior ofN (denoted by IntN ) is
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a submanifold ofM and the boundary∂N of N is a submanifold ofM of codimension 1
with respect toN .

We denote byT C̃ the tangent bundle of̃C, defined as follows. Ifx ∈ C̃, thenTxC̃
denotes the tangent vectorsX ∈ Tx(TQ), such thatX(8A) = 0, for anyA. If x is an
interior point, thenTxC̃ is the usual tangent space (IntC̃ is a submanifold ofTQ). The
annihilator(T C̃)0 of T C̃ is locally generated by{d8A}, i.e.

(T C̃)0 = span{d8A}.
Recall that a one-formα on TQ is semibasic if it belongs to the image ofJ ∗.

We consider a vector subbundle ofJ ∗(T ∗(TQ))|C̃ as follows

(F1)x =
{

span{J ∗(d8A)(x)} if x ∈ Int C̃

span{J ∗(d8A)(x), J ∗(d9)(x), f̄a(x)} if x ∈ ∂C̃
wheref̄a, 16 a 6 U are semibasic one-forms.

The setF1 is a vector bundle over̃C in an extended sense since not all of the fibres
have the same dimension. It represents reaction forces of the constraints (also known as
the Chetaev bundle). The one-forms{J ∗(d8A)(x)} generate reaction forces due to the
permanent constraints. The one-formJ ∗(d9)(x) is due to the one-sided constraint. The
one-forms{f̄1, . . . , f̄U } represent instantaneous reaction forces, due to the persistence of
some instantaneous constraints.

We may assume that there are in addition external forces acting on the system. These
forces are introduced as another vector bundleF2 over C̃ which is a vector subbundle of
J ∗(T ∗(TQ))|C̃ , i.e. it contains only semibasic one-forms. We also require thatF1 andF2

have a trivial intersection, that is,F1∩F2 = 0, and we consider the Whitney sumF1⊕F2.
We assume that the following two conditions hold
(i) (admissibility)

dim(T C̃)0 = dimJ ∗(T C̃)0

(ii) (compatibility)

J ∗(T C̃)0 ∩ ((T C̃)0)⊥ = 0

where the orthogonal complement((T C̃)0)⊥ is defined with respect to the Poisson structure
3L given by the symplectic formωL.

Remark 4.1.This condition is trivially satisfied if there are no permanent constraints.

Let α : T T ∗Q −→ T ∗TQ be the Tulczyjew diffeomorphism. We define an application
that extends triviallyα;

α̃ : T T ∗Q×TQ T ∗TQ −→ T ∗TQ×TQ T ∗TQ
by

α̃(w, r) = (α(w), r).
The mapα̃ is again a diffeomorphism.

Remark 4.2.Note thatT T ∗Q ×TQ T ∗TQ is meaningful since it was defined as the set of
couples(w, r) ∈ T T ∗Q× T ∗TQ such that

T πQ(w) = πTQ(r)
whereπM : T ∗M → M denotes the canonical projection.
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Let us consider the set

D = α̃−1(dL+ (F1⊕ F2), F1 ∩ ((T C̃)0)⊥).
Starting with coordinates(qκ) on Q, consider the induced coordinates inTQ, T ∗Q,

T ∗TQ, T T ∗Q andT TQ as in the precedent section. Then

α̃(qκ, pκ, q̇
κ , ṗκ; qκ, q̇κ , aκ, bκ) = (qκ, q̇κ , ṗκ , pκ; qκ, q̇κ , aκ, bκ).

If (w, r) ∈ T T ∗Q×TQ T ∗TQ, we can locally write

w = (qκ, pκ, q̇κ , ṗκ )
r = (qκ, q̇κ , aκ, bκ)

so that(w, r) ∈ D is equivalent to

(qκ, q̇κ , ṗκ , pκ) ∈ dL+ (F1⊕ F2)

and

(qκ, q̇κ , aκ, bκ) ∈ F1 ∩ ((T C̃)0)⊥.
The elements ofF2 are locally written as(qκ, q̇κ , fκ, 0), or equivalentlyfκ dqκ , so that
(w, r) ∈ D is equivalent to the following

(qκ, q̇κ , ṗκ , pκ) =



(
qκ, q̇κ ,

∂L

∂qκ
+ λA ∂8

A

∂q̇κ
+ fκ, ∂L

∂q̇κ

)
if (qκ, q̇κ ) ∈ Int C̃(

qκ, q̇κ ,
∂L

∂qκ
+ λA ∂8

A

∂q̇κ
+ µ̃ ∂9

∂q̇κ
+ fκ + ν̃a(f̄a)κ , ∂L

∂q̇κ

)
if (qκ, q̇κ ) ∈ ∂C̃

and

bκ = 0.

We conclude that(w, r) ∈ D is written as

pκ = ∂L

∂q̇κ

ṗκ = ∂L

∂qκ
+ λA ∂8

A

∂q̇κ
+ µ ∂9

∂q̇κ
+ fκ + νa(f̄a)κ

where we letµ = µ̃, νa = ν̃a on ∂C̃ andµ = µa = 0 on IntC̃ to unify notations, and also

bκ = 0 aκ arbitrary.

Hereafter we will denoteaκ by 1pκ .

4.1. Interpretation of the admissibility condition

Since

(T C̃)0 = span{d8A} J ∗(T C̃)0 = span{J ∗(d8A)}
the equality dim(T C̃)0 = dimJ ∗(T C̃)0 means that the map

J ∗ : (T C̃)0 −→ J ∗(T C̃)0

is an isomorphism at each point ofC̃. Hence,{ ∂8A
∂q̇κ

dqκ} are linearly independent, i.e. the
reaction forces are independent.
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4.2. Interpretation of the compatibility condition

We have

((T C̃)0)⊥ = {α ∈ T ∗(TQ) |3L(α, (T C̃)
0) = 0}.

Since(T C̃)0 = span{d8A}, this means that3L(α, d8A) = 0 for anyA. So, if α belongs to
the image ofJ ∗, then it is a semibasic one-form. In local coordinates we haveα = ακdqκ ,
andα ∈ ((T C̃)0)⊥ is equivalent to saying that3L(α, d8A) = 0 for anyA. This is in turn
equivalent to

ακ
∂8A

∂q̇χ
Wκχ = 0 for anyA. (8)

So, the compatibility condition

J ∗((T C̃)0) ∩ ((T C̃)0)⊥ = 0

is locally equivalent to the condition that the following matrix is non-singular(
Wκχ ∂8

A

∂q̇κ

∂8B

∂q̇χ

)
. (9)

The other condition in the definition ofD requires thatr ∈ F1 ∩ ((T C̃)0)⊥.
If we write r = 1pκdqκ , then from (8) we have thatr ∈ ((T C̃)0)⊥ is the same as

requiring

1pκ
∂8A

∂q̇χ
Wκχ = 0 for anyA. (10)

But r ∈ F1 means

r = 1pκdqκ = λ̄AJ ∗(d8A)+ µ̄J ∗(d9)+ ν̄af̄a =
(
λ̄A
∂8A

∂q̇κ
+ µ̄ ∂9

∂q̇κ
+ ν̄a(f̄a)κ

)
dqκ

with µ̄ = ν̄a = 0 on IntC̃. Hence

1pκ = λ̄A ∂8
A

∂q̇κ
+ µ̄ ∂9

∂q̇κ
+ ν̄a(f̄a)κ

and replacing conditions (9) so thatr belongs to the intersection, we obtain

λ̄A
∂8A

∂q̇κ

∂8B

∂q̇χ
Wκχ + µ̄ ∂9

∂q̇κ

∂8B

∂q̇χ
Wκχ + ν̄a(f̄a)κWκχ = 0. (11)

This means that if̄µ and ν̄a are given, we can computēλA. In particular, ifµ̄ = 0 and
ν̄a = 0 we haveλ̄A = 0 for anyA (which is the case identically on IntC̃).

Remark 4.3.If the Lagrangian is of the formL = T −V whereT is the kinetic energy of a
Riemannian metricg on the configuration space, that is,L = 1

2gκν(q)q̇
κ q̇ν−V (q), then the

compatibility condition is automatically satisfied since the matrix(Wκχ) is just the matrix
(gκν).

Remark 4.4.We have supposed that the boundary ofC̃ is connected, but it is clear that we
can consider the case of a boundary consisting of two or more components. We only need
to define the Chetaev bundleF1 at every component (see example 8.1).
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5. Motions

We will describe the motions for a mechanical system subjected to one-sided non-holonomic
constraints as defined in section 4.

A motion is a curve inT ∗Q×Q T ∗TQ, i.e. a pair of curves(η, ϕ) whereη is a curve
in T ∗Q andϕ is a curve inT ∗TQ such thatπQ ◦ η = τQ ◦ πTQ ◦ ϕ = γ . We assume that
the projection curveγ in Q is continuous and differentiable from above. The curvesη and
ϕ are not continuous in general, but posses lateral limits and are differentiable from above.
The jumping curve1η is defined as follows

1η(t) = τ ∗Qη(t+)− ϕ(t+)
where

τ ∗Q : T ∗γ (t)Q −→ T ∗πTQ(ϕ(t))(TQ).

The curveϕ is only auxiliary, and only the jumping curve is relevant.
The equation of motion is the condition that the image of the curve(η̇,1η) is contained

in D. Thus if we write

η(t) = (qκ(t), pκ(t))
η̇(t) = (qκ(t), pκ(t), q̇κ (t), ṗκ (t))
1η(t) = (qκ(t), q̇κ (t),1pκ, 0)

the above condition is equivalent to the following equations

pκ = ∂L

∂q̇κ

ṗκ = ∂L

∂qκ
+ λA ∂8

A

∂q̇κ
+ µ ∂9

∂q̇κ
+ fκ

1pκ = λ̄A ∂8
A

∂q̇κ
+ µ̄ ∂9

∂q̇κ
+ ν̄a(f̄a)κ

the Lagrange multipliersλA,µ, λ̄A, µ̄ satisfying the conditions stated in section 4. From
these local equations it is clear thatη is a curve of momenta, and1η is a curve which at
each point gives the jump in momenta produced by the impulsive forces.

6. Holonomic one-sided constraints

In this section, we modify the constructions of section 4 for holonomic one-sided constraints.
This is not a particular case of the non-holonomic situation.

It shoud be noted that the projection of the submanifoldC̃ is not necessarily the wholeQ.
This is just the case of holonomic one-sided constraints. In fact, letC be a submanifold with
boundary inQ, that is,C is locally defined by equations of the formφA(q) = 0, ψ(q) > 0.
From C we obtain a suitable submanifold̃C of TQ with boundary given by the local
equations

8A = (φA)c = 0 9 = ψv > 0

wheref c = dT f (resp.f v = π∗Q ◦ f ) denotes the complete (resp. vertical) lift toTQ of a

function f onQ. These equations mean thatC̃ is locally defined as follows

8A(qκ, q̇κ ) = q̇κ ∂φ
A

∂qκ
= 0 (12)

9(qκ, q̇κ ) = ψ(qκ) > 0. (13)
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The Chetaev bundle becomes

(F1)x =
{

span{(J ∗d8A)(x)} if x ∈ Int C̃

span{(J ∗d8A)(x), τ ∗Q(dψ)(x), f̄a(x)} if x ∈ ∂C̃.

Equations (12) and (13) mean that we are definingC̃ to be the usual tangent bundle
T C of C. Another possibility would be to take the tangent bundle consisting of the interior
tangent vectors at the points of the boundary, and the ordinary tangent space at the points
of the interior ofC, but as we will see later, that is not the better choice.

So, C̃ is defined alongC. A direct computation shows that our formalism is the natural
extension of the one previously developed by Lacomba and Tulczyjew [6].

7. Mixed constraints

Another interesting situation occurs when we have mixed constraints, that is, the functions
8A are ordinary non-holonomic constraints but we have in addition a holonomic one-sided
constraintψ(q) > 0. We can again define a submanifold with boundaryC̃ of TQ given by
the following equations

8A = 0 9 = ψv > 0,

which is locally written as follows

8A(qκ, κ̇) = 0 (14)

9(qκ, κ̇) = ψ(qκ) > 0 (15)

and the Chetaev bundle is given by

(F1)x =
{

span{(J ∗d8A)(x)} if x ∈ Int C̃

span{(J ∗d8A)(x), τ ∗Q(dψ)(x), f̄a(x)} if x ∈ ∂C̃.

8. Examples

Example 8.1 (Holonomic permanent and impulsive constraints).We describe the motion of
a particle in the segmentx + y = 1, x > 0 andy > 0, that is, the particle collides with the
walls x = 0 andy = 0. In order to study this system we introduce the regular Lagrangian

L(x, y, ẋ, ẏ) = 1
2(ẋ

2+ ẏ2)

and the constraints

φ = x + y − 1= 0

ψ1 = x > 0

ψ2 = y > 0.

The changes of momenta are given by

1px = λ̄+ µ̄1

1py = λ̄+ µ̄2

whereλ̄ = 0 if 0 < x < 1; µ̄1 = 0 if x > 0 andµ̄2 = 0 if y > 0.
Thus, if x = 0, the changes of momenta are determined by the algebraic equations

1px = λ̄+ µ̄1

1py = λ̄



Mechanical systems subjected to impulsive constraints 5845

and, by

1px = λ̄
1py = λ̄+ µ̄2

if y = 0.
The compatibility condition determines the multiplierλ̄ in function of the multipliers

µ̄1 or µ̄2. Therefore, ifx = 0,

(1px,1py) =
(
µ̄1

2
,− µ̄1

2

)
and

(1px,1py) =
(
− µ̄2

2
,
µ̄2

2

)
if y = 0.

If we suppose thate is the coefficient of restitution of both walls,x = 0 andy = 0,
then we will obtain that

(ẋ1− ẋ0, ẏ1− ẏ0) = ((1+ e)ẏ0,−(1+ e)ẏ0)

or, in other words,

ẋ1 = eẏ0

ẏ1 = −eẏ0.

Example 8.2 (Non-holonomic impulsive constraints).While moving in a vertical planexOy,
a circular disk of radiusR and massm hits a rough wall determined by the axisOx.
Assuming that the motion is planar, the system possesses three degrees of freedom: the
coordinatesx andy of the centre of the disk andθ the angle between a pointP of the disk
and the axisOy.

The system is described by the Lagrangian function

L = m

2
(ẋ2+ ẏ2+ k2θ̇2)

wheremk2 denotes the moment of inertia of the disk. In addition, there are two impulsive
constraints along the liney = R:

ψ = y − R
ψ ′ = ẋ − Rθ̇.

The Chetaev bundle is determined by

F1 = span{dy, dx − R dθ}
if y = R andF1 = 0 if y > R (i.e. free motion).

The algebraic equations for the instantaneous changes of momenta are

1px = mẋ1−mẋ0 = ν̄
1py = mẏ1−mẏ0 = µ̄
1pθ = mk2θ̇1−mk2θ̇0 = −Rν̄.

Without additional information these are the equations for the changes of momenta, i.e. the
relation between the velocities after and before the collision. In fact, we need two new
equations in order to determine the final velocity of the disk.

For example, we study two particular cases.
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(i) After the collision the disk rolls on theOx axis. In such a case, we obtain the
following relations between the components of the final velocity:

ẏ1 = 0 ẋ1− Rθ̇1 = 0.

After straightforward algebraic computations we obtain that

ẋ1 = R2ẋ0+ k2Rθ̇0

k2+ R2
.

Compare with [1].
(ii) Elastic collision without slipping. Since the collision is elastic thenẏ1 = −ẏ0, and

the no slipping condition means thatẋ1− Rθ̇1 = 0. Thus, the final velocity is given by

(ẋ1, ẏ1, θ̇1) =
(
R2ẋ0+ k2Rθ̇0

k2+ R2
,−ẏ0,

R2ẋ0+ k2R2θ̇0

k2+ R2

)
.

Example 8.3.A sphere of radiusr and mass 1 rolls without sliding on a horizontal plane.
At the instantt0, the sphere hits a rough wall determined by the planeyOz. Determine the
post-impact velocities (see [8]).

The system is described by:
(i) the regular Lagrangian function

L = 1

2
(ẋ2+ ẏ2+ ż2+ k2(θ̇2+ ϕ̇2+ ψ̇2+ 2ϕ̇ψ̇ cosθ))

(ii) the permanent constraints (the sphere rolls without slidding on thexOy plane):

φ1 = ẋ − rθ̇ sinψ + rϕ̇ sinθ cosψ = 0

φ2 = ẏ + rθ̇ cosψ + rϕ̇ sinθ sinψ = 0

φ3 = ż = 0

or, after algebraic manipulations,

φ′1 = ẋ cosψ + ẏ sinψ + rϕ̇ sinθ = 0

φ′2 = ẋ sinψ − ẏ cosψ − rθ̇ = 0

φ′3 = ż = 0

(iii) the instantaneous constraints onx = R:

91 = ẋ = 0

92 = ẏ − rϕ̇ cosθ − rψ̇ = 0

93 = θ̇ sinψ − ϕ̇ sinθ cosψ = 0

but sincer93 = 91− φ1, we consider only91 and92 as instantaneous constraints.
The Chetaev bundleF1 is given by

F1 =


span{cosψ dx + sinψ dy + r sinθ dϕ, sinψ dx − cosψ dy − r dθ, dz}

if x > R

span{cosψ dx + sinψ dy + r sinθ dϕ, sinψ dx − cosψ dy − r dθ, dz, dx,

dy − r cosθ dϕ − r dψ} if x = R.
The relation between the pre-impact and post-impact momenta is obtained from the

equations:

1px = λ1 cosψ + λ2 sinψ + µ
1py = λ1 sinψ − λ2 cosψ + ν
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1pz = λ3

1pθ = −rλ2

1pϕ = rλ1 sinθ − rν cosθ

1pψ = −rν.
From the compatibility condition we determine the Lagrange multipliersλ1, λ2 andλ3

in terms of the multipliersµ andν by using equation (11). Therefore,

1px = r2

k2+ r2
µ

1py = r2

k2+ r2
ν

1pz = 0

1pθ = rk2 sinψ

k2+ r2
µ− rk

2 cosψ

k2+ r2
ν

1pϕ = −r sinθ

(
k2 cosψ

k2+ r2
µ+ k

2 sinψ

k2+ r2
ν

)
− rν cosθ

1pψ = −rν
or, in terms, of velocities,

1ẋ = ẋ1− ẋ0 = r2

k2+ r2
µ

1ẏ = ẏ1− ẏ0 = r2

k2+ r2
ν

1ż = ż1− ż0 = 0

1θ̇ = θ̇1− θ̇0 = r sinψ

k2+ r2
µ− r cosψ

k2+ r2
ν

1ϕ̇ = ϕ̇1− ϕ̇0 = − r

sinθ

(
cosψ

k2+ r2
µ+ sinψ

k2+ r2
ν

)
1ψ̇ = ψ̇1− ψ̇0 = r cosθ

sinθ

(
cosψ

k2+ r2
µ+ sinψ

k2+ r2
ν

)
− r

k2
ν.

In order to obtain a complete description of the post-impact velocities it is necessary to
require additional information about the system.

For example, assume that the sphere remains rolling without sliding on the planex = 0
after the impact. Then, we have the following relations between the post-impact velocities:

ẋ1 = 0

ẏ1− rϕ̇1 cosθ − rψ̇1 = 0.

Both conditions determine the Lagrange multipliersµ andν as functions of the pre-impact
velocities, that is,

µ = − ẋ0(k
2+ r2)

r2

ν = −k
2(k2+ r2)(ẏ0− rϕ̇0 cosθ − rψ̇0)

r2(2k2+ r2)
.

The description of the collision of two balls runs along the same lines. In fact it can be
modelled as if each one of the balls was hitting a vertical wall along the tangent plane
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to both at the impact point. If the two balls have equal radius, the one-sided impulsive
constraint is given by

9 = (x −X)2+ (y − Y )2+ (z − Z)2 > 4r2

where(x, y, z) and(X, Y, Z) are the coordinates of the centres of the corresponding spheres
and9 defines a codimension one boundary given by the smooth quadric:

(x −X)2+ (y − Y )2+ (z − Z)2 = 4r2.

9. A projector for the permanent non-holonomic constraints

Here we construct a projector which is defined whenever the system is subjected to
permanent (i.e. those present all the time) non-holonomic constraints. This projector gives
an algebraic way of showing that Lagrange multipliersλ̄A can be computed in terms ofµ̄
and ν̄a, according to (11).

From the compatibility and admissibility conditions we have the following splitting of
T ∗(TQ):

T ∗x (TQ) = (J ∗(T C̃)0)x ⊕ ((T C̃)0)⊥x (16)

for all x ∈ C̃ (see [2]). Thus, each covectorα ∈ T ∗x (TQ) splits in a unique way as
α = α1 + α2, whereα1 ∈ (J ∗(T C̃)0)x andα2 ∈ ((T C̃)0)⊥x . Then, we can construct two
complementary projectors̄Q and P̄ defined byQ̄x(α) = α1 and P̄x(α) = α2.

Now, notice thatr = 1pκ dqκ ∈ ((T C̃)0)⊥, thenP̄(r) = r. Thus,

1pκ dqκ = P̄(1pκ dqκ)

= P̄
[
λ̄A
∂8A

∂q̇κ
+ µ̄ ∂9

∂q̇κ
+ ν̄a(f̄a)κ

]
dqκ

= µ̄P̄
(
∂9

∂q̇κ
dqκ

)
+ P̄(ν̄a(f̄a)κ dqκ).

Therefore, we obtain the expression

1pκ dqκ = µ̄P̄
(
∂9

∂q̇κ
dqκ

)
+ ν̄aP̄((f̄a)κ dqκ) (17)

where the Lagrange multipliers̄λA which are associated to the permanent non-holonomic
constraints8A do not appear explicitly.

Example 8.1 continued.The projectorQ̄ is

Q̄ = −1

2

(
∂

∂x
+ ∂

∂y

)
⊗ (dx + dy).

If x = 0

1p1 dx +1p2 dy = P̄(µ̄1 dx)

= µ̄1
(
dx − 1

2(dx + dy)
)

= µ̄1
(

1
2dx − 1

2 dy
)
.

Thus1p1 = µ̄1

2 and1p2 = − µ̄1

2 , as the regularity condition establishes.
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Also, if y = 0,

1p1dx +1p2 dy = P̄(µ̄2 dy)

= µ̄2
(
dy − 1

2(dx + dy)
)

= µ̄2
(− 1

2dx + 1
2 dy

)
.

Thus1p1 = − µ̄2

2 and1p2 = µ̄2

2
.

10. A projector for the permanent impulsive constraints

In the case where some of the impulsive constraints remain after the impulsive force action,
we define here another projector, which allows us to compute the new momenta in terms
of the old momenta.

Denote byF̃1 the vector subbundle, along the points of IntC̃, locally generated by the
one-forms

span

{
P̄
(
∂9

∂q̇κ
dqκ), P̄((f̄a)κ dqκ

)}
.

Let us consider a splitting

T ∗TQ = F̃1⊕ S̃
along IntC̃, i.e. we haveT ∗x TQ = (F̃1)x ⊕ S̃x , for any pointx ∈ Int C̃.

Denote byQ̃ and P̃ the complementary projectors:

Q̃ : T ∗TQ −→ F̃1

P̃ : T ∗TQ −→ S̃.

From (17) we obtain that

P̃(1pκ dqκ) = 0

or

P̃((pκ)1 dqκ) = P̃((pκ)0 dqκ)

where (pκ)0 and (pκ)1, 1 6 κ 6 dimQ are the momenta before and after the impulsive
force acts, respectively.

Suppose(pκ)1 dqκ belongs toS̃; then P̃((pκ)1 dqκ) = (pκ)1 dqκ and

(pκ)1 dqκ = P̃((pκ)0 dqκ).

Then, it is possible to determine by projection the momenta after the impulse,(pκ)1, from
the initial momenta(pκ)0.

Assume that we are working with a family of impulsive constraints9a = αaκ (q)q̇κ = 0.
We also assume that there are no permanent constraints or they have been eliminated through
the projectorP̄. If the impulsive constraints remain after the impulse, it means that

αaκ (q̇
κ )1 = 0 (18)

where we denote by(q̇κ )1 the velocity after and by(q̇κ )0 the velocity before the impulse
takes place. If the Lagrangian is of kinetic type

L = gκχ q̇κ q̇χ − V (q)
we have that relation (18) linear in velocities, is transformed into a relation linear in momenta

αaκg
κχ (pκ)1 = 0. (19)
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If we now choose

F̃1 = span{J ∗(d9A)}
S̃ = {α ∈ T ∗(TQ)|α(X9a ) = 0}

we obtain the direct sum decompositionT ∗TQ = F̃1 ⊕ S̃, sinceF̃1 ∩ S̃ = 0 because the
matrix C̃ = (C̃ab) = (αaκαbχgκχ ) is regular (gκχ are the components of a Riemannian metric).

The projectorP̃ : T ∗TQ→ S̃ has the local expressioñP = id− Q̃, where

Q̃ = C̃abX9a ⊗ J ∗(d9b)

and C̃ab are the entries of the inverse matrix ofC̃. It satisfies

(pκ)1 dqκ = P̃((pκ)0 dqκ). (20)

Alternatively, we obtain

1pκ dqκ = −Q̃((pκ)0 dqκ). (21)

Finally, the relationship between momenta before and after the instantaneous impulse
is given by

(pκ)1 = (pκ)0− C̃abαaκ ′gκ
′χ ′αbκ(pχ ′)0

or in terms of velocities

(q̇κ )1 = (q̇κ )0− C̃abαaκ ′gκχ
′
αbχ ′(q̇

κ ′)0.

Remark 10.1.The result is similar if we suppose that there exist permanent non-holonomic
constraintsφA, in addition to the impulsive constraints9a = αaκ q̇κ . Then, we choose

F̃1 = span{P̄(J ∗(d9a))}
S̃ = {α ∈ T ∗(TQ)|α(X9̄a ) = 0}

where9̄a = P̄(J ∗(d9a))(0) being0 an arbitary SODE vector field and̄P is the projector
constructed from the decomposition (16). In coordinates, ifP̄( ∂9a

∂q̇κ
dqκ) = βaκ dqκ then

9̄a = βaκ q̇κ .
If we suppose that the impulsive constraints remain after the impulse, thenαaκ (q̇

κ )1 = 0.
Since we must also have

0= βaκ (q̇κ )1 (22)

we deduce as in the previous case that

(pκ)1 dqκ = P̃((pκ)0 dqκ). (23)

or

1pκ dqκ = −Q̃((pκ)0 dqκ) (24)

whereP̃ is the projection over̃S, andQ̃ is projection overF̃1.
In coordinates,

(pκ)1 = (pκ)0− C̃abβaκ ′gκ
′χ ′βbκ (pχ ′)0

or in terms of velocities

(q̇κ )1 = (q̇κ )0− C̃abβaκ ′gκχ
′
βbχ ′(q̇

κ ′)0

whereC̃ab is the inverse matrix of(βaκ g
κχβbχ ).
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As a consequence of our construction of the projectorP̃, we obtain Carnot’s theorem,
relating the kinetic energy before and after the impulse, provided instantaneous constraints
remain.

Theorem 10.2 (Carnot’s theorem).If the instantaneous constraints remain, then the
following relationship between momenta before and after the action of the impulsive force
holds:

(pκ)1g
κχ (pχ)1− (pκ)0gκχ (pχ)0 = −((pκ)1− (pκ)0)gκχ ((pχ)1− (pχ)0).

Proof. Since the impulsive constraints remain after the impulse we deduce, because of
(22),

(pκ)1g
κχ (pχ)0 = (pκ)1gκχ (C̃abβaκ ′gκ

′χ ′βbχ(pχ ′)0+ (pχ)1)
= (βbχ (q̇χ )1)C̃abβaκ ′(q̇κ

′
)0− (pκ)1gκχ (pχ)1

= (pκ)1gκχ (pχ)1.
So, we have that

((pκ)1− (pκ)0)gκχ ((pχ)1− (pχ)0) = (pκ)1gκχ (pχ)1+ (pκ)0gκχ (pχ)0− 2(pκ)1g
κχ (pχ)0

= (pκ)0gκχ (pχ)0− (pκ)1gκχ (pχ)1.
�

Remark 10.3.Observe that Carnot’s theorem is evident, since it is nothing other than the
Pythagoras theorem:

|x − P̃(x)|2 = |x|2− |P̃(x)|2

since the projector̃P is orthogonal.

Example 8.2 continued.Consider the case where the constraints remain after the collision,
i.e.

ẏ1 = 0 ẋ1− Rθ̇1 = 0.

Denote by91 = ẏ and92 = ẋ − Rθ̇ . The projectorQ̃ is defined by

Q̃ =
∑

16a,b62

(C̃abX9a ⊗ J ∗(d9b))

whereCab is theab entry of the matrix(
m 0
0 k2m

k2+R2

)
and

X91 =
1

m

∂

∂y
X92 =

1

m

∂

∂x
− R

k2m

∂

∂θ
.

Then, we obtain the post-impact momenta from the pre-impact momenta by using the matrix
expression of the projector̃P as follows(

(px)1
(py)1
(pθ )1

)
=
( k2

k2+R2 0 − R
k2+R2

0 1 0
Rk2

k2+R2 0 R2

k2+R2

)(
(px)0
(py)0
(pθ )0

)
.



5852 A Ibort et al

11. Another type of impulsive motion

It is possible to extend our above constructions to a different setting where it is no longer
necessary to restrict our study to submanifolds with a boundary ofTQ.

We consider the submanifoldH (without a boundary) ofTQ locally determined by
the vanishing of the permanent non-holonomic constraints8A = 0. Now we introduce a
generalized vector bundle spaceF1 overH where not all of the fibres have, in principle,
the same dimension, such that it verifies

J ∗(T H)0 ⊆ F1 ⊆ J ∗(T ∗(TQ))
along the points ofH . For the sake of simplicity, we will suppose that the subset of points
x ∈ H where(J ∗(T H)0)x ( (F1)x is a submanifoldH̄ of H .

Assuming the admissibility condition, dim(T H)0 = dimJ ∗(T H)0, and the compatibility
condition,J ∗(T H)0∩ ((T H)0)⊥ = 0, we obtain that the dynamics of the impulsive motion
is also described by the subset

D = α−1(dL+ (F1⊕ F2), F1 ∩ ((T H)0)⊥)
of T T ∗Q ×TQ T ∗TQ, whereF2 is a subbundle ofJ ∗(T ∗TQ)|H which introduces the
ordinary external forces.

Remark 11.1.As in remark 4.1, the admissibility condition is trivially satisfied if there are
no permanent constraints.

The equations of motion are

ṗκ − ∂L

∂qκ
∈ F1⊕ F2.

Also, the impulsive jumps of momenta are given by

1pk dqκ ∈ F1.

If we suppose that(F1)x , x ∈ H̄ , is determined by

span{J ∗(d8A), f̄ a}
wheref̄ a are semibasic one-forms, then

1pk dqκ = λ̄AJ ∗(dφA)+ µ̄af a.
The compatibility conditions imply that the Lagrange multipliersλ̄A can be explicitly

determined from the remaining Lagrange multipliersµ̄a.
Now, we can define a projector̄P as in section 9, and we obtain

1pk dqκ = µ̄aP̄(f a).
Example 11.2 (Oblique central impact of two particles).Consider two small smooth spheres
modelized as particles,P1 andP2 of massm andM in collision with one another. We choose
the x- andy-axis, respectively, along the line of impact and along the common tangent to
the surfaces in contact. Take coordinates(x, y) and(X, Y ) for both particles, respectively.
The total kinetic energy of the system is given by

K = 1
2m(ẋ

2+ ẏ2)+ 1
2M(Ẋ

2+ Ẏ 2).

The Chetaev bundle of reaction forces is given by

F1 =
{
{0} if x 6= X or y 6= Y
span{dx − dX, dy − dY } if x = X and y = Y
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The changes of momenta during the collision are then

1px = µ1 1py = µ2 1pX = −µ1 1pY = −µ2.

Observe that these conditions give us the conservation of the total momenta in the collision,
that is, the vector sum of the momenta after the collision is equal to the vector sum of these
quantities before the collision.

By additional assumptions it is possible to find the values of the Lagrange multipliers
µ1 andµ2.

Assuming that there are no vertical impulsive forces acting during the impact, the
vertical component of the momentum of each particle is unchanged, i.e.(py)1 = (py)0 and
(pY )1 = (pY )0. Thus,µ2 = 0.

If we know the coefficient of restitutione (0 6 e 6 1), then we have, therefore, the
following relation between the relative velocities after and before the impact

(Ẋ)1− (ẋ)1 = −e((Ẋ)0− (ẋ)0).
After some computations we obtain that

µ1 = mM

m+M (1+ e)((Ẋ)0− (ẋ)0)
and

(ẋ)1 = M

m+M (Ẋ)0+ m

m+M (ẋ)0+ Me

m+M ((Ẋ)0− (ẋ)0)

(Ẋ)1 = M

m+M (Ẋ)0+ m

m+M (ẋ)0− me

m+M ((Ẋ)0− (ẋ)0).
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